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Experimental Investigations of the Flexible Rotor System by Introducing Parametric Excitations into both ends of the Rotating Shaft Axially
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This paper presents an experimental study of an active vibration controller for vibration in a flexible rotor system. Previous work by one of the authors has shown that the vibration amplitude can be modified by introducing an axially parametric excitation into one end of the shaft of the rotating flexible rotor system. This has led to further investigations by the introduction of the excitations into both ends of the shaft theoretically. The theoretical results showed a further reduction in the rotor response amplitude under principal parametric resonance. The perturbation method of multiple scales is used to solve the equations of motion. An experimental test machine uses two piezoelectric exciters mounted on both ends of the shaft.  The steady-state responses with and without the double parametric excitation terms were investigated. The results show a significant reduction of 23.4 % in the rotor response amplitude under principal parametric resonance and some good correlation between theory and experiment.
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Introduction
	
 Rotor Dynamics Problem

The main source of Vibration in Flexible Rotor Systems are mass unbalanced forces and perfect balance is virtually not achievable due to wear or depositions the machines are subjected to.  Reduction of Vibration in the Rotor System is very important for safe and efficient functioning.  Hence it is important to work with product development and research in the area of rotating machinery to modify the frequencies of the shaft rotor system thus reducing vibration in such systems.


Piezoelectric Actuator Solution 

The use of piezoelectric actuators in active Vibration Control has been considered in the past by [1], [2] and [3] used a peizo-electric actuator to stabilize the parametric resonance induced in a cantilever beam and to control bifurcation resulting in the shift of the bifurcation set and the expansion of the stable region. [4] used an active piezoelectric actuator engine mount to support a vehicle engine and reduce vibrations and force transmitted from the engine to the vehicle structure, and from road surface irregularities. Also shunted piezoelectric actuators with electric impedances constituting series of a resistance  and an inductance were used by [5] to passively control vibration in light structures. To actively control vibration in journal bearings, [6] used two stacked linear piezoactuators to actuate the position of the bearing journal to damp the vibrations and also to maintain the desired bearing journal position with an accuracy of micrometers. [7] studied the possibility of attenuating the vibrations experienced within a link of a system using active vibration control with piezoelectric patches as actuators.

Double Piezoelectric Exciter Concept

In [8] and [9], one of the authors in trying to control vibrations in rotor systems, designed a piezoelectric exciter with which he deliberately introduced parametric excitations into a flexible rotor-bearing system axially to moderate the response of the pre-existing mass-unbalance vibration inherent to the rotor. The Author used piezoelectric stack actuator to put axial excitations into the shaft to investigate the interactions between forced vibrations, which emanates from rotor unbalance and parametric excitations which results from the periodic stiffness variations caused by a periodic axial excitations from the actuator.  A practical implementable strategy was proposed in which the inherent and predominant instabilities in the flexible rotor bearing system were manipulated in such a way that their effects on the overall performance of the rotor system was effectively controlled.  In justifying this work, a program of research was carried out and the results showed reduction in the resonant amplitudes for forward whirl in the flexible rotor-bearing system by 21.9 percent. To further reduce vibrations and instabilities inherent in rotating machines one of the authors  in [10] made use of the above idea in the theoretical consideration of double piezoelectric exciters and the deliberate introduction of parametric excitations into the flexible rotor-bearing at both ends of the shaft.  This was done theoretically by introducing double excitation force terms into the governing equations of motion. The perturbation method of multiple scales was used to solve the equations of motion. The steady-state responses, with and without the double parametric excitation terms was investigated. The results showed a further reduction in the rotor response amplitude.   

Theoretical work
Equations of motion

The equations of motion, equations (1) to (4) are taken from [8] and [10], and Figure 1 is the reference frame for a disk on a rotating flexible shaft. A 3-D view of the rotor.

                                                        (1)

                                                       (2)

                                             (3)

                                           (4)   

                                           (5)

                                         (6)

Equations (1) and (2) are equations of motion without parametric excitation force terms and (3) and (4) are those with single parametric excitation force terms and (5) and (6) are those with double parametric excitation force terms. where .
The parameters of the rotor model are shown in Table 1.
[image: ]
	
Figure 1. Reference frame for a disk on a rotating flexible shaft. A 3-D view of the rotor.


Table1. Rotor Model Parameters
	Parameters
	Description

	

	linear stiffness coefficient

	

	damping coefficient

	

	displacements

	

	natural frequency

	

	nonlinear cubic stiffness coefficient

	

	excitation frequency

	

	mass unbalance mass unbalance

	

	characteristic equation coefficient

	

	external applied force




 is the axial excitation force term [8]. Parameters used in this work are calculated using data from the experimental rig in [8].
Solutions to the equations of motion

The approximate solution for the model of the flexible rotor system with and without parametric excitation terms are obtained using the method of multiple scales as

                     (7)

                        (8)

     
                                                                                                                               (9)



                                                                                                                               (10)

    
                                                                                                                            (11)

 
                                                                                                                             (12)




where, , ,and







Equations (7) and (8) are full time-domain solutions of the equations of motion (1) and (2) without parametric excitation terms and equations (9) and (10) are the solutions to the equations with single parametric excitation terms and equations (11) and (12) are the solutions to the equations with double parametric excitation terms.,, and  are amplitudes,  is the excitation frequency and  is the principal parametric resonance frequency and .
Experimental Work

A rotor-kit (built at Cape Coast Technical University workshop) and piezoelectric exciters specifically developed for this research are used for the experiment. The rotor kit provided a rotor supported by journal bearings, an electrical drive to run the rotor with a separate control box from which the desired rotational speed is selected. The torque is transmitted from the electrical motor to the rotor by means of a solid coupling. Provided are displacement transducers to measure the movements of the rotor. The rotor kit is equipped with the piezoelectric exciter designed for active vibration control. The critical parts of the exciter unit are, a piezoelectric actuator supported by a helical compression spring, all placed inside a linear sliding bearing, and an aluminum casing. The piezoelectric actuator is driven by a function generator through a piezoelectric actuator amplifier. To avoid direct contact between the shaft and piezoexciter, and to allow free rotation and movement of the shaft end, a small self-aligned ball bearing is fixed in between the shaft and the piezoexciter. The vibration response of the rotor is then measured by means of a Polytec Laser Vibrometer allowing the displacement responses to be identified and monitored by a multi-channel data acquisition analyser. Figures 2, 3 and 4 show the experimental configuration for activating the flexible rotor system. The leading principle here is to control, axially, the vibrations of the rotor, supported on conventional bearings, by using the piezoelectric actuator.

[image: ]

Figure 2: Schematic of the Piezoelectric Exciter [8]


[image: C:\Users\Lawrence\Desktop\experimental rig\SAM_0884.JPG]

Figure 3: Assembly of the Piezoexciter Test Rig with the two exciters at both ends of the shaft.

[image: C:\Users\Lawrence\Desktop\experimental rig\SAM_0882.JPG]

Figure 4: Close up of the Exciter

The objective of this work has been the design and construction of a test rig to verify the feasibility of active control of vibration in rotor dynamics using double piezoelectric actuators.  
In particular the possibility of reducing the amplitude of vibrations of a flexible dynamically unbalanced rotor within acceptable levels is investigated. 
This is carried out by designing a Piezoexciter excited by a high frequency drive. The active Piezoexciter comprises a sliding bearing which houses the piezoelectric stack actuator which is serially attached to a compression spring. Since the actuator operates only in expansion, with small displacement, the reaction spring is set up against it. The spring is adjusted to the required length by the spring compressor and voltage is applied through a piezoelectric voltage amplifier to the actuator which in turn develops the parametric excitation at a frequency of twice the first whirl frequency of the rotor system. The exciter is driven by a function generator through a high voltage amplifier. Activating the piezoelectric actuator at twice the excitation frequency of the rotor system generates the parametric excitation force to be introduced to the shaft, axially. 

The vibration response of the rotor-bearing system is then measured by means of the laser vibrometer. A multi-channel data acquisition analyser is then used to analyse the response. The compression spring of the exciter unit and the rotor-bearing system are set to their required length and first whirl resonance frequency respectively, and the response of the rotor is measured. The piezoelectric actuator is then activated, first at a frequency twice the first whirl frequency of the rotor system. A series of timed tests are performed and average readings are taken. Sweep tests around the first whirl frequency are then performed, first without activating the piezoexciter, and then with the exciter activated at the parametric excitation frequency.

Results and Discussion

Theoretical Results 
[image: ]
Figure 5: Amplitudes (q) of the response as functions of the frequency (rad/s): theoretical results, a-without parametric force term, b-with single parametric force term, c-with double parametric force term.
The  theoretical results as presented on Figure 5 were obtained first by solving the governing equations of motion using the perturbation method of multiple scales and the plot generated by using Mathematica TM software. In Figure 5, considering the plot indicated by a, responses in the first mode of q show hardening characteristics, jump phenomena and both stable and unstable solutions when the equations of motion contain no parametric force terms. Including single parametric force terms into the equations of motion, the results in figure 4, plots indicated by b, show 23% reduction in amplitude, elimination of the jump phenomena and stable solutions. With the introduction double parametric force terms, plots indicated by c, show 60.2% reduction in amplitude, elimination of the jump phenomena and stable solutions. The further reduction here indicates a more stable system at parametric frequency with the theoretical introduction of parametric forces at both ends of the shaft.
Experimental Results

Figure 6: Amplitudes of the disc vibration (q) versus frequency(rad/s) with a spring compression length of 25.2mm: Experimental results, a-without parametric force term, b-with single parametric force term, c-with double parametric force term.
In order to investigate the performance of the test rig shown in Figure 3 above, the loading condition of the spring of the exciter is set at a length of 25.2 mm [8], where the author in considering the performance of a similar test rig investigated three different loading conditions and arrived at the conclusion that the 25.2 mm compressed length of the spring gives better maximum and minimum spring forces. 



The influence of the activation of the single and double piezoelectric exciters were systematically examined. In the first case when the piezoexciter is not activated, i.e, when no parametric excitation is applied to the shaft and varying the shaft speed from 75 rad/s to 450 rad/s, Figure 5(a) shows a peak amplitude of 14.95 mm at the resonance frequency of  rad/s. In Figure 5(b), activating only one piezoexciter at a parametric frequency of  rad/s, where , the amplitude of disk vibration reduces to 12.8 mm.  For the third case, when both piezoexciters are activated at both ends of the shaft at parametric frequencies of 500 rad/s, the amplitude of disk vibration reduces to 11.45 mm and this is depicted in Figure 6(c). In Figure 6,  the combined effects due to the existing force vibration due to mass unbalance and also the additional parametric excitation in principal parametric resonance provided by the piezoexciter introduced into both ends of the shaft of the rotor system resulted in the moderation of the responses of the pre-existing mass unbalance vibration inherent to the rotor, with reduction in critical whirl amplitude. Introducing the parametric excitation into one end of the shaft of the rotor system results in figure 6(b) with 14.4% reduction in amplitude. With the introduction of the parametric excitations into both ends of the shaft results in plot indicated by 6(c), showing 23.4% reduction in amplitude, thus showing further reduction in amplitude. 
Conclusion

Comparison between the results from the theoretical analysis and the experimental benchmark summarized here shows evidence of a consistent phenomenon but with lower percentage in reduction for the experimental benchmark than the theoretical consideration, which is primarily due to the assumptions made when solving the nonlinear equations of motion analytically. The methods of investigating and identifying the response behavior of rotor system have all shown similar trends with regards to the effects of introducing double parametric forces. Prototypical experimental results from tests on rotor systems conclude that the novel piezoelectric exciter concepts could be successfully applied to both ends of the shaft of industrial machines, particularly installations where axial loading on the rotor is also an inherent part of the control actuation for a very high reduction in vibration amplitude. 
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